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Situated interpretation in computational creativity 

This paper describes, formalizes and implements an approach to computational 

creativity based on situated interpretation. The paper introduces the notions of framing 

and reframing of conceptual spaces based on empirical studies as the driver for this 

research. It uses concepts from situated cognition, and situated interpretation in 

particular, to be the basis of a formal model of the movement between conceptual 

spaces. This model is implemented using rules within interacting neural networks. This 

implementation demonstrates behaviour similar to that observed in studies of human 

designers.  

Keywords: interpretation; computational creativity; situated; design;  

1. Introduction 

Attempts to understand, support and automate aspects of human-like creativity are grounded 

in the notions of search and transformation of a space of possible solutions (Boden, 1991; 

Langley, 1987). Within this paradigm for computational creativity, a system may discover 

useful and novel or surprising artefacts (in the P-creativity sense), through search within a 

defined space or through exploration that transforms this space in some way (Boden, 1991; 

Gero, 1994; Wiggins, 2006b). Creative systems have been produced that can successfully 

search or transform an identifiable space to produce P-creative (and potentially H-creative) 

artefacts in diverse domains such as architecture (Merrell, Schkufza, & Koltun, 2010; 

Schneider, Fischer, & König, 2011), art (Colton, 2012; McCorduck, 1991), mathematics 

(Colton, Bundy, & Walsh, 2000; Lenat, 1976) and music (Pachet, 2012; Smith & Garnett, 

2012). A challenge for creative systems that has not yet been adequately addressed is the 

framing of creative tasks, the production and development of the space within which creative 

activity occurs (Cross, 2004; Dorst & Cross, 2001; Schön, 1983; Seelig, 2012). 

For systems aiming to frame creative activity in a way that is inspired by human 

phenomena the literature suggests that: (i) the system will have knowledge from experience; 



 

 
3 

(ii) the system will draw upon these experiences to set up the space within which creative 

activity will occur; and (iii) the system will change this space during creative activity. For 

example, in studies where designers ‘think aloud’ whilst designing it has been observed that 

designers are able to re-interpret their work in a novel way that changes their understanding 

of what it is that they are doing (Schon & Wiggins, 1992; Suwa, Gero, & Purcell, 2000; Suwa 

& Tversky, 1997). The designer has produced a design artefact within one framing of the 

problem – and then, from within this frame, been able to find entirely unexpected features 

within the same artefact. 

In this paper a situated framework is articulated and implemented to explain the 

interaction between experience, expectation and a changing frame for a creative task. The 

process of interpretation within a creative system is where this interaction occurs, due to the 

clear distinction between the thing being perceived (e.g. an image of a pipe) and the 

interpretation of that thing (e.g. it need not be interpreted as a pipe). Each time a system 

interprets, we may ask the question why it produced this interpretation and not another. The 

claim being made is that for systems aiming at human-like creativity, movement between 

frames can be triggered by interpretation, and that this can be modelled and explained as the 

interaction between experience (what the system knows), expectation (what is in and implied 

by the current frame) and the stimulus (what is being interpreted). 

Adapting nomenclature from Wiggins (Wiggins, 2006a) two different spaces can be 

identified for a system. The first is the universe, the space of artefacts potentially accessible 

to the system without limits upon time or resources. In many creative systems (e.g. any that 

permits an agglomerative production rule) the universe is an infinite space. Within a 

particular state of the system creative activity takes place in a smaller space within this 

universe, based upon the experiences (or knowledge) of the system and the notions to which 
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it is currently attending. This reduced space will be referred to as the conceptual space of the 

system. 

These two spaces are illustrated in Figure 1, inspired by studies of designers engaged 

in creative activity (Suwa et al., 2000; Suwa & Tversky, 1997). The rectangle in Figure 1 

represents the universe of the designer. Within this space the designer searches for a solution 

within the limited conceptual space (grey ellipse), a space that is constrained by the 

designer’s conception of the design task as well as their past experiences. Something causes a 

change to the conceptual space, leading to a new space that can potentially be highly 

dislocated from the preceding space. This kind of a dislocated movement in conceptual space 

is sometimes described as a ‘moment of insight’ (Csikszentmihalyi & Sawyer, 1995). 

This paper describes and models the way that the process of interpretation can move a 

system from one conceptual space to another in a way that is useful to the creative task. It 

occurs through the interaction between the conceptual space, the implicit expectations of that 

space and the stimulus being interpreted. The paper is structured by first introducing notions 

of situatedness and interpretation, followed by the formulation of simple examples of systems 

to distinguish situated interpretation, followed by an implementation of situated 

interpretation. The paper concludes with a discussion of the significance of this modelling. 

 
Figure 1 Movement between conceptual spaces during creative activity (after Kelly & Gero, 
2014) 
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2. Theoretical background 

2.1 Situatedness 

In a situated system knowledge is something that is developed through experience of 

interaction with the world and is constrained by the way that the system conceives of its own 

activities (Clancey, 1997). As the system continues to experience the world, “subsequent 

experiences categorize and hence give meaning to what was experienced before” (Clancey, 

1997; Dewey, 1896). An example of this can be seen in the way that perceptual symbol 

systems (PSS) represent and utilize concepts (Barsalou, 1999). Concepts in a PSS are 

conceived as convergence zones that co-ordinate the re-enaction of elements of, rather than 

whole entities of, perceptual experiences. This re-enacting occurs within and is a function of 

the current conceptual space, in contradistinction to the notion of concepts as static identifiers 

that are stored and retrieved (Barsalou, 2005a, 2005b). An implication of situated enaction of 

perceptual experiences rather than retrieval of static concepts (a higher level of abstraction) is 

that the combinatorial possibilities from those perceptual experiences are exponentially 

greater. 

In this work situations are considered as a construct emerging from experience with 

the co-ordination of concepts. A situated system is one in which the co-ordination of concepts 

changes. Similar definitions that assist in clarifying what is meant by this are those systems in 

which the internal context changes (Kennedy & Shapiro, 2004), the epistemic frame changes 

(Shaffer et al., 2009), the ecology of mind changes (Gabora, Rosch, & Aerts, 2008) or the use 

of grounded knowledge from experience within the world changes (Barsalou, 2007). 

2.2 Situated interpretation 

Interpretation is defined as a process by which the experiences of the system are used to 

create an internal representation from a source, where the term source refers to the artefact 
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(internal or external) being interpreted. Situated interpretation is said to occur in systems 

that: (i) interpret; (ii) are situated; and (iii) utilise expectations in interpreting. It is a process 

through which a source, the current conceptual space and the past experiences of the system 

interact to produce an internal representation. Change to the conceptual space can occur 

during this process. 

2.2.1 Expectations in situated interpretation 

One type of interpretation can be seen in systems that relate a source to one of a collection of 

static identifiers through a relationship of ‘as a’, e.g. identifying an unknown object as a 

BLOCK (Pylyshyn, 1977; Russell, Norvig, Canny, Malik, & Edwards, 1995). In contrast to 

this, a situated interpretation system commences with an expectation of what will be 

interpreted, and proceeds to construct an interpretation based upon a ‘pull’ from these 

expectations and a ‘push’ from the source to produce an internal representation (Gero & 

Kannengiesser, 2004; Kelly & Gero, 2014; Kelly & Gero, 2011). In an unchanging or 

constrained environment a system may be able to develop expectations that are useful for all 

circumstances. However, in a dynamic or unbounded environment a system will likely find 

circumstances in which adaptation of expectations is required. Interpretation is concerned 

with this need for a balance between a push from the “buzzing blooming confusion” of a 

source (James, 1890) and a pull from the stability of expectations. 

Through pull, interpretation attempts to construct an internal representation of the 

world that fits with what is expected. The expectation is present prior to the stimulus, with 

pull attempting to see whether it can adequately construct what is expected using the data 

present in the stimulus. For example, when participants in an experiment are played the sound 

of a single note followed by the sound of white noise they are able to ‘hear’ the note within 
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the white noise (Riecke, van Opstal, Goebel R, & Formisano, 2007). The expectation of the 

note prior to the white noise forms the basis for perceiving a note within the random signal. 

Push is the part of interpretation concerned with data that are not expected that may 

still require perception and allows for expectations to change based upon what is found in the 

source. Push deals with those circumstances where for a number of reasons expectations 

might not be useful (e.g. not a good fit with the world). An example of push from the source 

into interpretation is the way that the sound of a police siren is heard even if it is not 

expected. 

The model of interpretation presented and implemented here contains both pull and 

push. In order to implement pull a notion of expectations is required. A distinction can be 

made between explicit and implicit expectations. Explicit expectations refer to the concepts 

and percepts currently being attended to within a conceptual space. Implicit expectations are 

then those that are related in some way to these explicit expectations (e.g. through similarity 

or through proximity within knowledge structures) but not currently being attended to. 

Examples of how implicit expectations affect interpretation can be observed in human 

phenomena of implicit memory (Graf & Schacter, 1985; Schacter, 1987), priming (Schacter, 

1987) (Phaller & Squire, 2009) and selective attention (Cozolino & Siegel, 2009).  

2.2.2 Examples of situated interpretation 

Aspects of situated interpretation can be identified in existing knowledge-based and creative 

systems. Formal models of learned selective attention bias the production of an internal 

representation on the basis of past experiences (Kruschke, 2011). There are many examples 

of analogy making systems (Goel, 1997; Goel, Vattam, Wiltgen, & Helms, 2012; Jeong & 

Kim, 2014) that are concerned with mapping relationships in function, behavior and structure 

from a source to a target (Gentner, 1983; Gentner & Colhoun, 2010; Qian & Gero, 1996). 
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This ability to find analogical similarities is an important part of the ‘pull’ aspect of 

interpretation, as the construction of an internal representation based upon expectations will 

be enhanced by analogical reasoning; such reasoning is also often an example of human 

creative activity (Green, Kraemer, Fugelsang, Gray, & Dunbar, 2012; Holyoak, 1996). 

Models of conceptual slippage can be considered one way of implementing the push-pull of 

interpretation (French, 1995; Hofstadter, 2008). 

2.3 Towards a formal description of situated creative systems 

The elements of Wiggins’ formal model of creativity (Wiggins, 2006a, 2006b) provide the 

basis for formulating a model of a situated creative system, Table 1. The aim of developing 

this model is to consider ways that a situated system can navigate its own knowledge to 

produce P-creative artefacts in a manner inspired by human studies (Schön, 1983; Suwa et 

al., 2000). 

Table 1 Symbols used in formulating situated computational creativity 
⟦. ⟧ A function generator for forming conceptual space 

〈〈. , . , . 〉〉 A function generator that moves the system from one situation to 
another 

𝐶 Conceptual space 

𝐸 Expectations 

𝐼 Situated interpretation 

𝐿 The language of the system 

𝑁 A subset of 𝐿 for interpreting during 𝑇 

𝑅 A subset of 𝐿 used in generating the conceptual space 𝐶 

𝑆 Situation 

𝑇 A subset of 𝐿 defining traversal within 𝐶 

𝑈 The universe of conceivable concepts within the system 
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2.3.1 The universe and conceptual space 

The universe 𝑈 is defined as the concepts that the system is capable of producing given a 

language, 𝐿. The elements of the universe that have been experienced by the system will be 

referred to as 𝑈!. 

A function ⟦. ⟧ generates a conceptual space 𝐶 from the experiences of the system 𝑈! 

and a set of rules 𝑅, Equation 1. It is an abductive task to produce this function. 

𝐶 = ⟦𝑅⟧(𝑈!)         (1) 

2.3.2 Exploring and interpreting within conceptual space 

The system carries out some activity defined by a set of rules 𝑇 that enables search to occur 

given a particular conceptual space, 𝐶. 

As a part of this search of conceptual space the system produces representations. 

These representations are interpreted to create an internal representation using a set of rules, 

𝑁. 

2.3.3 Movement between situations 

An interpreter generates functions using the three arguments 𝑅, 𝑇 and 𝑁 that result in the 

system moving from one conceptual space to another, through changes to 𝑅, Equation 2 

(Wiggins, 2006a). 

𝐶𝑖+1 = 〈〈𝑅,𝑇,𝑁〉〉(𝐶𝑖)       (2) 

In a situated system, previous experiences are used in constructing the conceptual 

space. Traversal 𝑇 within the conceptual space is dependent solely upon a subset of previous 

experiences that are re-enacted within the situation, not upon all previous experiences 𝑈!. 
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3. Distinguishing situated interpretation in simple creative systems 

A simple creative system serves to clarify the notion of situated interpretation for movement 

between conceptual spaces. An abstract description is given followed by two different 

instantiations. In this system the language 𝐿 permits all real numbers ℝ and 𝑈 is an infinite 

space. The system has had experience of a subset of this universe, 𝑈!, which is limited to the 

integers {1, 2, 3, … ,10}. 𝑅 is used to generate the conceptual space 𝐶 from experience by 

attending to two concepts within 𝑈!  such that: 

⟦𝑅⟧(𝑈!) = 𝐶 = {𝑐1, 𝑐2} 

Creative activity occurs as expressed in Equation 2. Two different systems will be 

described, one in which the system changes situation through 𝑇 and the other through 𝐼. The 

latter is representative of situated interpretation. 

3.1 A simple situated generative system 

The system is situated, and 𝑇 is defined for this system as a function that produces an external 

representation of a design, 𝑥, using the average of the current two concepts within the 

conceptual space. The reason that just two concepts are used is that it is the smallest number 

required to show interaction; a larger number could also be used. The average is used here for 

generation as a simple way to represent an interaction between concepts. 𝑇 is productive in 

that the system can produce things it has never experienced: 

𝑇(𝐶) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑐1, 𝑐2) = 𝑥 

Interpretation within the system is unaffected by expectations (i.e. interpretation is not 

situated). An internal representation 𝑐𝑥 is created of the source that the sensor encounters, and 

for the sake of the example perfect sensors are assumed in the system along with an ability to 

learn such that: 

𝑁(𝑥) = 𝑐𝑥 = 𝑥 
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The conceptual space is changed using 𝑅 to select two concepts and the process of 

creative activity can repeat in this way. Such a system is capable of having an unlimited 

number of experiences. 

3.2 A simple situated interpretation system 

A similar system can demonstrate a similar unlimited number of potential experiences 

through situated interpretation rather than through generation. In this system 𝑁 is productive 

and 𝑇 is not. 𝑇 involves selection of a concept from experiences and use in generating 

external 𝑥: 

𝑇(𝑈!) = 𝑥 

The conceptual space of the system consists of the two currently attended to concepts 

𝑐1 and 𝑐2. In order to demonstrate interpretation as a construction from expectations the 

system requires some form of explicit expectations. This is implemented in this model as an 

expectation to find the average value of the concepts in the situation. In this way expectations 

are situated – the same 𝑈! with a different 𝐶 will produce different expectations. 

Interpretation 𝑁 in this example is represented in a simple way, as taking an average between 

the expectation and the source. This is a simplistic representation of the negotiation between 

the pull from the expected value and the push from the value being sensed: 

𝑁(𝑥) = 𝑐𝑥 = 𝑎𝑣𝑔(𝑎𝑣𝑔(𝑐1 , 𝑐2),𝑥) 

The interpreted value resulting from 𝑁 is now an experience, a part of 𝑈!. The process 

of creative activity repeats in this way. Such a system is capable of having unlimited novel 

experiences. 
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3.3 Discussion: search in infinite space 

To an external observer both systems exhibit a similar search of the space. The system 

described in Section 3.1.2 is achieving what could be described as search within an infinite 

space through interpretation in a constructive way rather than through generation. This is a 

simple example to pose the question of how constructive interpretation can lead a system 

with previous experiences towards spaces within which useful concepts might be encountered 

– systems that through creative activity develop a useful framing of the problem (Maher, 

2000). 

The system in Section 3.1.2 can be conceived as a system that searches space. By 

changing its conceptual space it is capable of discovering any one of the uncountable 

concepts 𝑐 ∈ ℝ: 1 < 𝑐 < 10. Table 2 represents the system using pseudo-code to make this 

clearer. The purpose of the example is to distinguish interpretation from generation and show 

its effects. The distinction of search-and-exploration through interpretation rather than 

generation will become clearer through subsequent examples with deeper knowledge 

structures. 

Table 2 Pseudo-code as search for real numbers 

𝐼𝑛𝑖𝑡 
Select a target as any real number 𝛼 ∈ ℝ: 1 < 𝛼 < 10 
𝑈! = {1,2,3, … ,10} 
Produce an external concept 𝑥 as initial source 

1 𝑅 – Select from all known concepts the closest upper and lower bound 
over the target 

2 𝑁 – Interpret 𝑥 to produce new concept 𝑐𝑥 

3 𝑇 – Generate  new 𝑥 from within 𝐶 

4 Repeat from step 1 
 

In the system described in Table 2 the situation gets progressively closer to one in 

which the targeted concept can be located. 𝑈! expands as the system has more experiences. 

The purpose of the separation between generation and interpretation is to provide a contrast – 
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there is no reason why both cannot be implemented within the one system. The claim is that a 

system with significant experience can undertake creative activity 〈〈𝑅,𝑇,𝑁〉〉 within a 

conceptual space that is a reduced subset of experience 𝐶 ⊂ 𝑈! that results in a move towards 

a space 𝐶 that is useful to the current task. It does this through interpretation that relates 

expectations (experience within the current situation) to the product of design activity 𝑥, be it 

internal (e.g. thought experiments) or external (e.g. a sketch). 

4 Situated interpretation in more complex knowledge systems 

4.1 Situated interpretation in knowledge based systems 

How can situated interpretation be useful in knowledge-based creative systems? Knowledge 

in such systems is assumed to take the form of experiences from multi-modal sensory data 

and potentially complex internal knowledge structures, typically a hierarchy. Through taking 

actions in their world and through sensory observation these systems develop knowledge 

about the sense data produced by the world, with potential for abstraction over experiences 

(Barsalou, 2005a). 

Such a system can hold expectations about the world based upon its knowledge – of 

spatial/structural relations (e.g. seeing a car implies four wheels, whether or not they are 

visible) and temporal relations (e.g. an object will continue at its present velocity). The focus 

in this description is limited to spatial expectations, as this is sufficient to describe and 

implement situated interpretation. 

Let expectations 𝐸 be made up of explicit expectations 𝐸∗ (those to which the system 

is attending) and implicit expectations 𝐸′ (those implied by the structure of the system and 

resulting from experience). 

In order to introduce a hierarchy of abstract we will refer to a concept 𝑐 ∈ 𝐶 as a 

prototype resulting from convergence of perceptual information. Units of perceptual 
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information will be referred to as percepts 𝑝 ∈ 𝑃, which themselves originate in sensors 

(Gärdenfors, 2000). The situation 𝑠 is an explicit representation of the co-ordination of 

concepts. Within a creative system explicit expectations can be defined as those concepts in 

the conceptual space and the percepts from which they were constructed, Equation 4. 

𝐸∗ = {𝑃,𝐶, 𝑠}         (4) 

Situated interpretation has been defined as the construction of an internal 

representation from a source 𝑥 and expectations 𝐸. Let the interpreted representation 𝐼 be 

composed of different levels of abstraction: 

𝐼 = {𝐼𝑃, 𝐼𝐶 , 𝐼𝑠} 

A double arrow  is used which contains (i) a loop representing ‘pull’ or 

construction from expectations; and (ii) a solid arrow representing a ‘push’ from data where 

expectations are not satisfied. Interpretation occurs through three processes: 

𝐼𝑃: 𝑥 𝐼𝑃 

𝐼𝐶:𝑃𝐼 𝐼𝐶 

𝐼𝑠:𝐶𝐼 𝐼𝑠 

Each of these represents a process by which the system attempts to construct an 

interpretation (i.e. checking to see if expectations are useful) and, if not, then the data is 

passed on to a higher layer (after Gero & Fujii, 2000; Hawkins, 2005).  

Chaining these processes results in a conception of interpretation as a dynamic 

parallel process that is likely to produce coherency in 𝐼𝑃, 𝐼𝐶 and 𝐼𝑠 due to the feedback of 

expectations and feedforward of data, Figure 2. For example, pull in both 𝑃 and 𝐶 may be 

unable to construct from expectations and so in both cases data are pushed upwards. This 

𝐸𝑃 

𝐸𝐶 

𝐸𝑠 
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leads to a change of expectations in 𝑠 which then cascade down to 𝐶 and then 𝑃. These 

expectations can now be used to produce 𝐼𝑃, 𝐼𝐶 and 𝐼𝑠. 

Interpretation in this way will typically settle upon a unique 𝐼 over time. In rare cases 

the process may be unstable, oscillating between different 𝐼. This is a good fit with 

observations of human interpretation of optical illusions (e.g. (Leopold, Wilke, Maier, & 

Logothetis, 2002; Long & Toppino, 2004)). The model is inspired by the neuroscience 

observations of Mountcastle and the detection of feedback between layers of the human 

cortex (Hawkins, 2005; Mountcastle, 1997). 

Pull from expectations maintains stability within current 𝐶. Push from the data in each 

layer when expectations are not met facilitate learning from new experiences and a change in 

𝐶. 

 

Figure 2 Situated interpretation as dynamic construction from a source using expectations 

4.1.2 Implicit expectations in interpretation 

This description is useful as a model for how these notions of cognitive processes 

(expectations) and sensory perceptions (of a source) can interact during interpretation. Whilst 

the focus of interpretation is upon construction of an internal representation of a source, a 
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result of potential changes to expectations during the process is that 𝐶 can change through 

interpretation. The significance for creativity is that such a form of interpretation allows for 

specific exploration through 𝑇 within restricted 𝐶, whilst permitting change to conceptual 

space through 𝑁. It also addresses the question of how 𝐶 changes when it does change – the 

experience and knowledge structures of the system are, in the context of 𝐶, the implicit 

expectations and it is these that suggest how the system will move to a new 𝐶. 

The set of implicit expectations 𝐸′ is a function of both the past experiences 𝑈! and 

the current situation 𝐸∗. The function 𝑓 for producing implicit expectations is implemented 

using some notion of proximity to 𝐸∗: 

𝑓(𝑈!,𝐸∗) = 𝐸′, 𝐸∗ ∩ 𝐸′ = ∅ 

The notion of proximity is dependent upon the way that a system represents 

knowledge. In the systems in Sections 4.2 and 4.3, proximity is implemented in two ways, as 

a function of Euclidean distance within a vector space and as connectedness between layers 

of abstraction. Whilst the specific measure of proximity is implementation-specific, some 

notion of proximity is required; this may be based upon notions such as similarity (Nosofsky, 

1988) or upon something entirely different, e.g. proximity within a computational 

representation. 

Secondly, the concepts held by the system have arisen through experience. Consider 

identically implemented systems Α and Β, each of which have had different experiences such 

that 𝑈!
𝐴 ≠ 𝑈!

𝐵. It is entirely feasible based upon common experiences, 𝑈!
𝐴 ∩ 𝑈!

𝐵, that explicit 

expectations will be identical, 𝐸∗𝐴 = 𝐸∗𝐵, yet due to perhaps minor differences in past 

experiences the implicit expectations will be different, 𝐸′𝐴 ≠  𝐸′𝐵. This can lead to 

significant differences between interpreted representations 𝐼(𝑥) in each system even if the 

difference in experience is trivial. It is possible (if unlikely) for systems to have different 
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experiences yet identical explicit and implicit expectations. Table 3 summarizes these 

relationships between past experiences, implicit and explicit expectations and interpreted 

representations. 

During creative activity, interpretation makes use of both the explicit and implicit 

expectations. It is the presence of implicit expectations that forms the basis for a claim that 

through situated interpretation changes to 𝐶 occur based upon past experiences that can aid a 

system to move to a 𝐶 within which a desired solution can be found. 

Table 3 Relationships between experiences, implicit and explicit expectations and interpreted 
representations of a source in two systems 𝐴 and 𝐵 
Experiences Explicit 

expectations 
Implicit 
expectations 

∃𝐼: 𝐼𝐴 ≠ 𝐼𝐵 ∃𝐼: 𝐼𝐴 = 𝐼𝐵 

𝑈!
𝐴 = 𝑈!

𝐵 𝐸∗𝐴 = 𝐸∗𝐵 𝐸′𝐴 =  𝐸′𝐵 No Yes 
𝑈!
𝐴 = 𝑈!

𝐵 𝐸∗𝐴 = 𝐸∗𝐵 𝐸′𝐴 ≠  𝐸′𝐵 Yes Yes 
𝑈!
𝐴 = 𝑈!

𝐵 𝐸∗𝐴 ≠  𝐸∗𝐵 𝐸′𝐴 =  𝐸′𝐵 Yes Yes 
𝑈!
𝐴 = 𝑈!

𝐵 𝐸∗𝐴 ≠  𝐸∗𝐵 𝐸′𝐴 ≠  𝐸′𝐵 Yes No 
𝑈!
𝐴 ≠ 𝑈!

𝐵 𝐸∗𝐴 = 𝐸∗𝐵 𝐸′𝐴 =  𝐸′𝐵 Yes Yes 
𝑈!
𝐴 ≠ 𝑈!

𝐵 𝐸∗𝐴 = 𝐸∗𝐵 𝐸′𝐴 ≠  𝐸′𝐵 Yes Yes 
𝑈!
𝐴 ≠ 𝑈!

𝐵 𝐸∗𝐴 ≠  𝐸∗𝐵 𝐸′𝐴 =  𝐸′𝐵 Yes Yes 
𝑈!
𝐴 ≠ 𝑈!

𝐵 𝐸∗𝐴 ≠  𝐸∗𝐵 𝐸′𝐴 ≠  𝐸′𝐵 Yes No 

4.2 Implementing situated interpretation 

4.2.1 Abstract framework for implementation in unsupervised learning systems 

A general description of implementing situated interpretation is provided for two linked 

unsupervised learning systems in which inputs are classified by finding the best matching 

node 𝐵𝑀𝑈 (e.g. SOM or ART networks (Ciresan, Meier, & Schmidhuber, 2012; Gu, 2010)). 

A system with 2 layers, 𝐿1 (lower) and 𝐿2 (upper) is used and each layer is described as a 

collection of nodes 𝑀.  

The output from 𝐿1 forms the input to 𝐿2 as in hierarchical unsupervised learning 

systems. The algorithm for finding the 𝐵𝑀𝑈 for an input is altered such that only a subset of 

nodes, the expected nodes 𝑀𝐸 ⊂ 𝑀, is utilised. 𝑀𝐸  is constructed from the explicit 
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expectations 𝑀∗ within each layer and implicit expectations 𝑀′. Explicit expectations 𝑀∗ are 

those nodes currently active in 𝐿1 and 𝐿2. 

The set of implicit expectations are constructed from a combination of: (i) distance 

within a layer (either based upon node adjacency or distance of nodes from those in 𝑀∗); and 

(ii) connections between layers (from experience). 

A similarity threshold 𝜎 is defined as a minimum similarity required for construction 

from expectations to occur within a layer utilising solely the expected nodes. and is expressed 

as a distance 𝑑 (e.g. based upon Nosofsky similarity (Nosofsky, 1988) between input and 

𝐵𝑀𝑈). Construction from expectations can occur within a layer, e.g. from a source 𝑥, if the 

inequality in Equation 3 holds: 

{ 𝐵𝑀𝑈 ∈ 𝑀𝐸|𝑑(𝐵𝑀𝑈, 𝑥) < 𝜎}       (3) 

If construction cannot occur within a layer then data are instead pushed to an upper 

layer, where the same process occurs. In this way either: (i) expectations are satisfied in an 

upper layer, leading to changed expectations in a lower layer; or (ii) the topmost layer does 

not have expectations satisfied. 

Whilst constructive interpretation is described as a dynamic process, Figure 2, it can 

be implemented as a linear process within a two-layer network, Figure 3. As a linear process 

there is first an attempt by pull within each layer to construct from expectations, with push 

occurring where this construction does not occur. This is repeated in each layer, cascading 

upwards; in Figure 3 it occurs first in 𝐿1 with over external data, and then in 𝐿2 over the 

current output from 𝐿1. If expectations change in 𝐿2 then these are fed back down to 𝐿1. 

When no interpretation has been constructed in any layers through 𝑀𝐸  one of three 

things happen: (i) learning occurs in a layer; (ii) a change can be triggered in 𝜎; or, as in the 
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implementations here (iii) in the top layer implicit expectations are expanded through some 

form of spreading activation (Anderson, 1983). 

 

Figure 3 A linear implementation of situated interpretation in a two layer system with 
numbered steps: 1 pull from expectations in 𝐿1; 2 push from the source into 𝐿1; 3 pull from 
the expectations of 𝐿2; 4 push from 𝐿1 into 𝐿2; 5 an update of 𝐿1 expectations by 𝐿2; and 6 
interpretation through pull from 𝐿1 with the updated expectations.  

4.2.2 An implementation demonstrating stability 

The architecture described in Section 4.2.1 was implemented using two linked 2D self-

organising maps (SOMs) (Dittenbach, Merkl, & Rauber, 2000; Kohonen, 1990), 𝑆𝑂𝑀1 and 

𝑆𝑂𝑀2, with sizes respectively 100x100 nodes and 40x40 nodes. The model demonstrates the 

pattern of changing 𝐶 observed in Figure 1. Three outputs from the lower layer form input to 

the upper layer, which during training leads to abstraction over these inputs, Figure 4. During 

training, each SOM uses the Kohonen training algorithm (Kohonen, 1990) in two phase 

training to: (i) reducing the neighbourhood radius to 1; and (ii) reducing the learning 

increment from 0.1 to 0. 

The network is trained upon sets of three 16x16 icons. Each set of three is constructed 

from randomly generated crosses, squares and triangles – both size of the icon and placement 

within the 16x16 tartan grid are random. Further, every set of three icons during training is 

composed of either: (i) all three icons the same type (three squares, three crosses or three 

triangles); or (ii) all three different (e.g. one cross, one square, one triangle). 
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Following training, an initialised system holds a set of explicit expectations that guide 

interpretation and the system is placed in a changing environment. The environment is 

automatically generated, with a state generated using the same algorithm that produced the 

training set. The environment moves towards another one of these expected states through a 

number of interpolation states that are generated through the addition or subtraction of pixels, 

until the next expected state is reached. This process continues indefinitely. The left side of 

Figure 5 demonstrates this progression from one expected state to another with two 

interpolation states in between. The right side of Figure 5 shows the resulting internal 

representation. 

 
Figure 4 Explicit expectations in a two-layer SOM 

The resulting behaviour in the system is stability of 𝐶 with repeated interpretation of a 

changing 𝑥; followed by a sufficiently different 𝑥 to trigger a change in 𝐶. In Figure 5(a) the 

system interprets the source as three crosses. The source 𝑥 is similar to the training stimuli 

and, with current 𝐸, Equation 3 is satisfied, producing 𝑁(𝑥) ≈ 𝑥. In Figure 5(b) 𝑁(𝑥) is 

unchanged, despite there has being a change in 𝑥. This occurs because Equation 3 is still 

satisfied for current 𝐸, and thus the internal representation does not change. 

In Figure 5(c) Equation 3 is no longer satisfied due to further change in 𝑥 increasing 

𝑑. A change in 𝑁(𝑥) has happened producing interpretation as a cross, a triangle and a 

square. This change occurs as described in Figure 3, with 𝐿1 unable to satisfy Equation 3, 

passing data to 𝐿2 which in turn cannot satisfy Equation 3. Spreading activation in 𝐿2 leads 
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an interpretation in this layer that can satisfy Equation 3. This causes a change of 𝐸 in 𝐿1. 

With these new expectations an interpretation is found in 𝐿1 that fits with 𝐿2. The changed 

interpretation found in 𝐿2 is produced through the implementation of implicit expectations as 

based upon Euclidean distance within the layer. For this reason there is similarity in 𝐼1 

between Figure 5(b) and 5(c) – the new interpretation is based upon the implicit expectations 

of the previous situation and the nature of 𝑥. 

In Figure 5(d) 𝑥 is now four squares. This 𝑥 is one of the expected states, data from 

the training set and so a part of 𝑈!. However, due to the situation at this time the system 

maintains an unchanged 𝐼(𝑥) as the data satisfies Equation 3 with current 𝐸. The interpreted 

representation is the one that fits where the system is at (internally) at the time of interpreting, 

which will often not be the ‘best match’. 

 
Figure 5 Constructive interpretations in a changing environment, left side as the environment 
and right side as constructed interpretation from: (a) three crosses; (b) first interpolation state; 
(c) second interpolation; and (d) four squares 

4.3 Divergent exploration with floor plans through situated interpretation 

A further implementation serves to demonstrate situated interpretation within creative 

systems, in the domain of housing floor plan designs. The system is not a creative system by 

(a) 

(b) 

(c) 

d) 
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most definitions as it has neither goals nor a fitness function. However, it demonstrates 

further the balance between specific and divergent exploration important for creative activity 

(Greif, 1994; McCrae, 1987). The system is initialised within a conceptual space and repeats 

a cycle of design-generation, interpretation and then generating once more within the 

resulting conceptual space – an implementation the “seeing-moving-seeing” of design 

(Schön, 1983), Equation 2. 

A set of 56 floor plans from 3 different architects (Palladio, Wright and Khan) was 

used for training the system, Figure 6. In training the system, automated edge detection was 

used to separate each plan out into a number of 16x16 feature maps, with these feature maps 

the input into 𝐿1. Training in 𝐿2 has supervised connections between hard-coded floor plan 

representation in 𝐿2 (rather than learnt through training) and feature maps in 𝐿1. 

 

Figure 6 A sample of 6 of the 56 floor plans used in training the system (after Jupp, 2005) 
 

 
Figure 7 The floor plans with full detail (Figure 6) are reduced to a canonical representation 
and learnt as a sequence of 16x16 pixel icons 

4.3.1 Generation within the system 

The system is initialized within a situation, represented by a single node within the top layer 

and 𝐶 is composed of 4 currently active concepts randomly selected from within the situation. 
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The system implements 𝑇 as generation of an artefact in a 24x24 pixel canvas. The 

four currently active concepts are each placed within the canvas in a distinct location. For 

reference Figure 8(a) shows the initial representation of a floor plan, along with Figure 8(b), 

the four initial concepts of the system, and (c) a ‘sketch’ that has been produced by 

representing each of these concepts in a random location within the external canvas. 

 
(a)          (b)        (c) 

Figure 8 (a) A representation of the original floor plan; (b) a set of four feature maps as the 
current conceptual space; and (c) the representation produced by generating from within this 
space 

4.3.2 Interpretation within the system 

After producing a representation, the system interprets it. The system saccades across the 

design from top left to bottom right and each 16x16 pixel section of the canvas encountered 

in this way is interpreted. 

In Figure 9(a) the system interprets the canvas within its current situation. The red 

boxes indicate where, in the course of a saccade across the canvas, the system has been able 

to construct from expectations. It is typical of the system that it draws with concepts and then 

finds the same concepts within its own work. However, at some point interpretation will 

construct a concept from implicit expectations. 

Figure 9(b) shows the concepts that have been constructed during interpretation. The 

top two and lower right images are all explicitly expected concepts. However, the lower left 
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image is from a different floor plan – it has come from expectations implicit within the 

situation. It now becomes an explicit concept, used for sketching. In this way the cycle of 

moving and seeing continues. 

 
  (a)            (b) 
Figure 9 Interpretation within the system occurs through a saccade from top left to bottom 
right: (a) the four areas used for construction during interpretation marked by red boxes; (b) 
the concepts constructed through interpretation, where the lower left comes from implicit 
expectations. 

4.3.3 Implicit expectations in the model 

Implicit expectations in the model were defined as: (i) those nodes within 𝐿1 within a 

specified distance from explicitly expected nodes; and (ii) those nodes within 𝐿1connected to 

the current situation through connections in 𝐿2. An example of the latter can be seen in 

Figure 9(b), where the implicit expectation used (lower left concept) has come from another 

floor plan that was not the initial situation. This other floor plan has other associated concepts 

which now become implicitly expected. 

Without implicit expectations, the model will behave in a predictable way – explicit 

expectations will be used for constructing every time. As a result the interpretation process 

here has been programmed to prioritise the construction from an implicit expectation over an 

explicit expectation. 
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4.3.4 Discussion and limitations of the model 

The model takes the constituent parts of an original floor plan and uses them to generate 

designs. The point of interest is that implicit expectations within the situation, through 

similarity in 𝐿1 and connectedness through 𝐿2, lead the model to change its conceptual space.  

With these changes to 𝐶, as in the model in Section 4.2, a consistent state is 

maintained that allows for specific exploration, followed by identification of features during 

interpretation that shifts the system to divergent exploration. This fits with the pattern 

observed in designers in previous studies (Figure 1 and (Suwa et al., 2000)) as well as calls 

for both specific and divergent types of exploration to be present in models of computational 

creativity (Greif, 1994). 

Further, when a change of 𝐶 is triggered, the way in which the system moves into a 

new situation is determined by a combination of the current situation, past experiences and 

the implementation of the system. As observed in Figure 5(c) the new interpretation has 

something in common with both the previous interpretation and the new source. It is claimed 

that this type of interpretation can lead to the type of design trajectories observed in human 

creativity. 

The systems implemented here are limited in a number of ways. Firstly, the model 

was implemented to maintain 4 concepts as the output from every process of interpretation. 

This was done by relaxing the value for 𝜎 during interpretation until at least 4 concepts were 

encountered (and if more than 4 concepts were found, priority was given based upon greater 

similarity). This limitation relates to the far broader question of ‘chunking’ in interpretation, 

which can be framed as the problem of how a system, interpreting a complex source, 

structures the source into a number of parts, each of which are interpreted. Situated 

interpretation as seen in Figure 2 taken with examples in the literature (Barsalou, 1999; 
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Gärdenfors, 2000; Hawkins, 2005) provide some clues as to how this may occur, yet this 

problem lies beyond the scope of the paper. 

The most significant limitation is that the models implemented here use a simple 

technology (linked SOMs) and have just two layers. This has been done for the sake of 

clarity, yet a consequence is that the application of the technique to a real-world domain is 

yet to be demonstrated and evaluated. Further research is required to consider what effect the 

dispersion of implicit expectations between many layers of abstraction might have. 

Specifically, deep learning neural networks (Bengio, 2009) have been identified as a novel 

technique that would be well suited to adaptation for situated interpretation, with multiple 

layers of abstraction and high performance in visual and auditory domains which are well 

suited to demonstrations of computational creativity (Boulanger-Lewandowski, Bengio, & 

Vincent, 2012; Liapis, Martınez, Togelius, & Yannakakis, 2013). 

5. Conclusion 

Systems which aim at understanding and supporting human creativity can benefit from 

implementing situated interpretation. Situated interpretation is a novel paradigm for 

interpretation that has arisen from the situated cognition tradition. It is important to 

computational creativity because it provides a way of addressing the framing problem. 

Within a situated system that has a great deal of experience of the world there are 

many possible conceptual spaces within which it may undertake creative activity. This 

precondition is important, as for systems with a great deal of experience, especially those 

with a type of situated conceptualization, there is rapid combinatorial explosion if the system 

attempts to create using the entirety of its experiences. 

Given these many different conceptual spaces, how does the system move from the 

one within which it commences the problem, towards one which is useful for finding a 
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solution? The answer suggested by situated interpretation is that this occurs through a form of 

exploration within the current situation (e.g. reasoning or action such as generation of an 

artefact) followed by interpretation. The expectations, both implicit and explicit, in current 

situation are used during interpretation such that as a result of interpretation the system may 

either: (i) maintain the current situation; or (ii) move to a new situation. 

Where this movement to a new situation occurs, it is due to implicit expectations 

within the situation. In systems with multiple levels of abstraction this may occur in any level 

of abstraction, with propagation of expectations (as well as interpretations) between layers 

maintaining consistency of internal representations. 

The combination of these effects results in systems that engage in the type of 

movement between conceptual spaces observed in Figure 1, where both specific and 

divergent exploration are present, and where changes of expectations at higher levels of 

abstraction can trigger large changes in the situation, and changes of expectations at lower 

levels can trigger small changes to the situation. 

It is accepted that humans engaged in creative activity often change the frame within 

which they are acting. It follows that creative systems seeking to emulate this form of 

creative process need a way of moving between different conceptual spaces. This paper has 

proposed an argument for why interpretation is the way in this can occur, with past 

experiences, the current conceptual space and the current stimuli all being utilised to create 

an internal representation, a process that can also move the system to another conceptual 

space. The models described here provide a foundation towards the formalization of framing 

within creative systems. 
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